Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Folia Microbiol (Praha) ; 69(2): 423-432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217756

RESUMO

Oxalate degradation is one of lactic acid bacteria's desirable activities. It is achieved by two enzymes, formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). The current study aimed to screen 15 locally isolated lactic acid bacteria to select those with the highest oxalate degradation ability. It also aimed to amplify the genes involved in degradation. MRS broth supplemented with 20 mM sodium oxalate was used to culture the tested isolates for 72 h. This was followed by an enzymatic assay to detect remaining oxalate. All isolates showed oxalate degradation activity to variable degrees. Five isolates demonstrated high oxalate degradation, 78 to 88%. To investigate the oxalate-degradation potential of the selected isolates, they have been further tested for the presence of genes that encode for enzymes involved in oxalate catabolism, formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). Three strains showed bands with the specific OXC and FRC forward and reverse primers designated as (SA-5, 9 and 37). Species-level identification revealed Loigolactobacillus bifermentans, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum. Preliminary results revealed that the tested probiotic strains harbored both oxc and frc whose products are putatively involved in oxalate catabolism. The probiotic potential of the selected strains was evaluated, and they showed high survival rates to both simulated gastric and intestinal fluids and variable degrees of antagonism against the tested Gram-positive and negative pathogens and were sensitive to clarithromycin but resistant to both metronidazole and ceftazidime. Finally, these strains could be exploited as an innovative approach to establish oxalate homeostasis in humans and prevent kidney stone formation.


Assuntos
Acil Coenzima A , Carboxiliases , Probióticos , Humanos , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Carboxiliases/genética , Oxalatos/metabolismo
2.
Brain Res ; 1827: 148758, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199308

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) is a life-threatening neurological disease that usually has a poor prognosis. Neurogenesis is a potential therapeutic target for brain injury. Ketone metabolism also plays neuroprotective roles in many neurological disorders. OXCT1 (3-Oxoacid CoA-Transferase 1) is the rate-limiting enzyme of ketone body oxidation. In this study, we explored whether increasing ketone oxidation by upregulating OXCT1 in neurons could promote neurogenesis after SAH, and evaluated the potential mechanism involved in this process. METHODS: The ß-hydroxybutyrate content was measured using an enzymatic colorimetric assay. Adeno-associated virus targeting neurons was injected to overexpress OXCT1, and the expression and localization of proteins were evaluated by western blotting and immunofluorescence staining. Adult hippocampal neurogenesis was evaluated by dual staining with doublecortin and 5-Ethynyl-2'-Deoxyuridine. LY294002 was intracerebroventricularly administered to inhibit Akt activity. The Morris water maze and Y-maze tests were employed to assess cognitive function after SAH. RESULTS: The results showed that OXCT1 expression and hippocampal neurogenesis significantly decreased in the early stage of SAH. Overexpression of OXCT1 successfully increased hippocampal neurogenesis via activation of Akt/GSK-3ß/ß-catenin signaling and improved cognitive function, both of which were reversed by administration of LY294002. CONCLUSIONS: OXCT1 regulated hippocampal ketone body metabolism and increased neurogenesis through mechanisms mediated by the Akt/GSK-3ß/ß-catenin pathway, improving cognitive impairment after SAH.


Assuntos
Coenzima A-Transferases , Disfunção Cognitiva , Hipocampo , Neurogênese , Hemorragia Subaracnóidea , Ácido 3-Hidroxibutírico , beta Catenina , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos
3.
Protein Sci ; 31(4): 864-881, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35049101

RESUMO

The coenzyme A (CoA) transferases are a superfamily of proteins central to the metabolism of acetyl-CoA and other CoA thioesters. They are diverse group, catalyzing over a 100 biochemical reactions and spanning all three domains of life. A deeply rooted idea, proposed two decades ago, is these enzymes fall into three families (I, II, and III). Here we find they fall into different families, which we achieve by analyzing all CoA transferases characterized to date. We manually annotated 94 CoA transferases with functional information (including rates of catalysis for 208 reactions) from 97 publications. This represents all enzymes we could find in the primary literature, and it is double the number annotated in four protein databases (BRENDA, KEGG, MetaCyc, UniProt). We found family I transferases are not closely related to each other in terms of sequence, structure, and reactions catalyzed. This family is not even monophyletic. These problems are solved by regrouping the three families into six, including one family with many non-CoA transferases. The problem (and solution) became apparent only by analyzing our large set of manually annotated proteins. It would have been missed if we had used the small number of proteins annotated in UniProt and other databases. Our work is important to understanding the biology of CoA transferases. It also warns investigators doing phylogenetic analyses of proteins to go beyond information in databases.


Assuntos
Proteínas de Bactérias , Coenzima A-Transferases , Proteínas de Bactérias/química , Catálise , Coenzima A , Coenzima A-Transferases/química , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Bases de Dados de Proteínas , Humanos , Filogenia
4.
Microb Cell Fact ; 20(1): 229, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949197

RESUMO

BACKGROUND: Steroid drugs are essential for disease prevention and clinical treatment. However, due to intricated steroid structure, traditional chemical methods are rarely implemented into the whole synthetic process for generating steroid intermediates. Novel steroid drug precursors and their ideal bacterial strains for industrial production have yet to be developed. Among these, 9,21-dihydroxy-20-methyl-pregna-4-en-3-one (9-OH-4-HP) is a novel steroid drug precursor, suitable for the synthesis of corticosteroids. In this study, a combined strategy of blocking Δ1-dehydrogenation and the C19 pathway as well as improving the intracellular environment was investigated to construct an effective 9-OH-4-HP-producing strain. RESULTS: The Δ1-dehydrogenation-deficient strain of wild-type Mycobacterium neoaurum DSM 44074 produces 9-OH-4-HP with a molar yield of 4.8%. Hsd4A, encoding a ß-hydroxyacyl-CoA dehydrogenase, and fadA5, encoding an acyl-CoA thiolase, were separately knocked out to block the C19 pathway in the Δ1-dehydrogenation-deficient strain. The two engineered strains were able to accumulate 0.59 g L-1 and 0.47 g L-1 9-OH-4-HP from 1 g L-1 phytosterols, respectively. Furthermore, hsd4A and fadA5 were knocked out simultaneously in the Δ1-dehydrogenation-deficient strain. The 9-OH-4-HP production from the Hsd4A and FadA5 deficient strain was 11.9% higher than that of the Hsd4A deficient strain and 40.4% higher than that of the strain with FadA5 deficiency strain, respectively. The purity of 9-OH-4-HP obtained from the Hsd4A and FadA5 deficient strain has reached 94.9%. Subsequently, the catalase katE from Mycobacterium neoaurum and an NADH oxidase, nox, from Bacillus subtilis were overexpressed to improve the intracellular environment, leading to a higher 9-OH-4-HP production. Ultimately, 9-OH-4-HP production reached 3.58 g L-1 from 5 g L-1 phytosterols, and the purity of 9-OH-4-HP improved to 97%. The final 9-OH-4-HP production strain showed the best molar yield of 85.5%, compared with the previous reported strain with 30% molar yield of 9-OH-4-HP. CONCLUSION: KstD, Hsd4A, and FadA5 are key enzymes for phytosterol side-chain degradation in the C19 pathway. Double deletion of hsd4A and fadA5 contributes to the blockage of the C19 pathway. Improving the intracellular environment of Mycobacterium neoaurum during phytosterol bioconversion could accelerate the conversion process and enhance the productivity of target sterol derivatives.


Assuntos
Redes e Vias Metabólicas , Mycobacteriaceae/genética , Mycobacteriaceae/metabolismo , Fitosteróis/metabolismo , Pró-Fármacos/metabolismo , Esteroides/metabolismo , Proteínas de Bactérias/genética , Coenzima A-Transferases/genética , Edição de Genes , Técnicas de Inativação de Genes , Genoma Bacteriano , Hidroliases/genética , Oxirredutases/genética
5.
Am J Physiol Heart Circ Physiol ; 321(4): H751-H755, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533402

RESUMO

Lack of glucose uptake compromises metabolic flexibility and reduces energy efficiency in the diabetes mellitus (DM) heart. Although increased use of fatty acid to compensate glucose substrate has been studied, less is known about ketone body metabolism in the DM heart. Ketogenic diet reduces obesity, a risk factor for T2DM. How ketogenic diet affects ketone metabolism in the DM heart remains unclear. At the metabolic level, the DM heart differs from the non-DM heart because of altered metabolic substrate and the T1DM heart differs from the T2DM heart because of insulin levels. How these changes affect ketone body metabolism in the DM heart are poorly understood. Ketogenesis produces ketone bodies by using acetyl-CoA, whereas ketolysis consumes ketone bodies to produce acetyl-CoA, showing their opposite roles in the ketone body metabolism. Cardiac-specific transgenic upregulation of ketogenesis enzyme or knockout of ketolysis enzyme causes metabolic abnormalities leading to cardiac dysfunction. Empirical evidence demonstrates upregulated transcription of ketogenesis enzymes, no change in the levels of ketone body transporters, very high levels of ketone bodies, and reduced expression and activity of ketolysis enzymes in the T1DM heart. Based on these observations, I hypothesize that increased transcription and activity of cardiac ketogenesis enzyme suppresses ketolysis enzyme in the DM heart, which decreases cardiac energy efficiency. The T1DM heart exhibits highly upregulated ketogenesis compared with the T2DM heart because of the lack of insulin, which inhibits ketogenesis enzyme.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/etiologia , Metabolismo Energético , Insulina/metabolismo , Corpos Cetônicos/metabolismo , Miocárdio/metabolismo , Animais , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cetoacidose Diabética/etiologia , Cetoacidose Diabética/metabolismo , Dieta Cetogênica , Feminino , Humanos , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Masculino
6.
Biosci Rep ; 41(8)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34338280

RESUMO

Coenzyme A transferases (CoATs) are important enzymes involved in carbon chain elongation, contributing to medium-chain fatty acid (MCFA) biosynthesis. For example, butyryl-CoA:acetate CoA transferase (BCoAT) is responsible for the final step of butyrate synthesis from butyryl-CoA. However, little is known about caproyl-CoA:acetate CoA-transferase (CCoAT), which is responsible for the final step of caproate synthesis from caproyl-CoA. In the present study, two CoAT genes from Ruminococcaceae bacterium CPB6 and Clostridium tyrobutyricum BEY8 were identified by gene cloning and expression analysis. Enzyme assays and kinetic studies were carried out using butyryl-CoA or caproyl-CoA as the substrate. CPB6-CoAT can catalyze the conversion of both butyryl-CoA into butyrate and caproyl-CoA into caproate, but its catalytic efficiency with caproyl-CoA as the substrate was 3.8-times higher than that with butyryl-CoA. In contrast, BEY8-CoAT had only BCoAT activity, not CCoAT activity. This demonstrated the existence of a specific CCoAT involved in chain elongation via the reverse ß-oxidation pathway. Comparative bioinformatics analysis showed the presence of a highly conserved motif (GGQXDFXXGAXX) in CoATs, which is predicted to be the active center. Single point mutations in the conserved motif of CPB6-CoAT (Asp346 and Ala351) led to marked decreases in the activity for butyryl-CoA and caproyl-CoA, indicating that the conserved motif is the active center of CPB6-CoAT and that Asp346 and Ala351 have a significant impact on the enzymatic activity. This work provides insight into the function of CCoAT in caproic acid biosynthesis and improves understanding of the chain elongation pathway for MCFA production.


Assuntos
Proteínas de Bactérias/metabolismo , Butiratos/metabolismo , Caproatos/metabolismo , Clonagem Molecular , Clostridium tyrobutyricum/enzimologia , Coenzima A-Transferases/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Clostridium tyrobutyricum/genética , Coenzima A-Transferases/química , Coenzima A-Transferases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Modelos Moleculares , Mutação , Oxirredução , Filogenia , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Appl Environ Microbiol ; 87(14): e0295920, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33931420

RESUMO

Many bacteria and other organisms carry out fermentations forming acetate. These fermentations have broad importance for foods, agriculture, and industry. They also are important for bacteria themselves because they often generate ATP. Here, we found a biochemical pathway for forming acetate and synthesizing ATP that was unknown in fermentative bacteria. We found that the bacterium Cutibacterium granulosum formed acetate during fermentation of glucose. It did not use phosphotransacetylase or acetate kinase, enzymes found in nearly all acetate-forming bacteria. Instead, it used a pathway involving two different enzymes. The first enzyme, succinyl coenzyme A (succinyl-CoA):acetate CoA-transferase (SCACT), forms acetate from acetyl-CoA. The second enzyme, succinyl-CoA synthetase (SCS), synthesizes ATP. We identified the genes encoding these enzymes, and they were homologs of SCACT and SCS genes found in other bacteria. The pathway resembles one described in eukaryotes, but it uses bacterial, not eukaryotic, gene homologs. To find other instances of the pathway, we analyzed sequences of all biochemically characterized homologs of SCACT and SCS (103 enzymes from 64 publications). Homologs with similar enzymatic activity had similar sequences, enabling a large-scale search for them in genomes. We searched nearly 600 genomes of bacteria known to form acetate, and we found that 6% encoded homologs with SCACT and SCS activity. This included >30 species belonging to 5 different phyla, showing that a diverse range of bacteria encode the SCACT/SCS pathway. This work suggests the SCACT/SCS pathway is important for acetate formation in many branches of the tree of life. IMPORTANCE Pathways for forming acetate during fermentation have been studied for over 80 years. In that time, several pathways in a range of organisms, from bacteria to animals, have been described. However, one pathway (involving succinyl-CoA:acetate CoA-transferase and succinyl-CoA synthetase) has not been reported in prokaryotes. Here, we discovered enzymes for this pathway in the fermentative bacterium Cutibacterium granulosum. We also found >30 other fermentative bacteria that encode this pathway, demonstrating that it could be common. This pathway represents a new way for bacteria to form acetate from acetyl-CoA and synthesize ATP via substrate-level phosphorylation. It could be a target for controlling yield of acetate during fermentation, with relevance for foods, agriculture, and industry.


Assuntos
Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Propionibacteriaceae/metabolismo , Succinato-CoA Ligases/metabolismo , Acetilcoenzima A/metabolismo , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Fermentação , Genoma Bacteriano , Propionibacteriaceae/genética , Succinato-CoA Ligases/genética
8.
J Ind Microbiol Biotechnol ; 48(5-6)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33899921

RESUMO

Polyhydroxyalkanoates (PHAs) provide biodegradable and bio-based alternatives to conventional plastics. Incorporation of 2-hydroxy acid monomers into polymer, in addition to 3-hydroxy acids, offers possibility to tailor the polymer properties. In this study, poly(D-lactic acid) (PDLA) and copolymer P(LA-3HB) were produced and characterized for the first time in the yeast Saccharomyces cerevisiae. Expression of engineered PHA synthase PhaC1437Ps6-19, propionyl-CoA transferase Pct540Cp, acetyl-CoA acetyltransferase PhaA, and acetoacetyl-CoA reductase PhaB1 resulted in accumulation of 3.6% P(LA-3HB) and expression of engineered enzymes PhaC1Pre and PctMe resulted in accumulation of 0.73% PDLA of the cell dry weight (CDW). According to NMR, P(LA-3HB) contained D-lactic acid repeating sequences. For reference, expression of PhaA, PhaB1, and PHA synthase PhaC1 resulted in accumulation 11% poly(hydroxybutyrate) (PHB) of the CDW. Weight average molecular weights of these polymers were comparable to similar polymers produced by bacterial strains, 24.6, 6.3, and 1 130 kDa for P(LA-3HB), PDLA, and PHB, respectively. The results suggest that yeast, as a robust and acid tolerant industrial production organism, could be suitable for production of 2-hydroxy acid containing PHAs from sugars or from 2-hydroxy acid containing raw materials. Moreover, the wide substrate specificity of PHA synthase enzymes employed increases the possibilities for modifying copolymer properties in yeast in the future.


Assuntos
Ácido Láctico/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Escherichia coli/metabolismo , Engenharia Genética , Hidroxibutiratos/metabolismo , Microbiologia Industrial , Redes e Vias Metabólicas , Poli-Hidroxialcanoatos/química
9.
J Exp Clin Cancer Res ; 40(1): 123, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832517

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) contribute to multiple biological processes in human glioblastoma (GBM). However, identifying a specific lncRNA target remains a challenge. In this study, bioinformatics methods and competing endogenous RNA (ceRNA) network regulatory rules were used to identify GBM-related lncRNAs and revealed that OXCT1 antisense RNA 1 (OXCT1-AS1) is a potential therapeutic target for the treatment of glioma. METHODS: Based on the Gene Expression Omnibus (GEO) dataset, we identified differential lncRNAs, microRNAs and mRNAs and constructed an lncRNA-associated ceRNA network. The novel lncRNA OXCT1-AS1 was proposed to function as a ceRNA, and its potential target miRNAs were predicted through the database LncBase Predicted v.2. The expression patterns of OXCT1-AS1 in glioma and normal tissue samples were measured. The effect of OXCT1-AS1 on glioma cells was checked using the Cell Counting Kit 8 assay, cell colony formation assay, Transwell assay and flow cytometry in vitro. The dual-luciferase activity assay was performed to investigate the potential mechanism of the ceRNA network. Finally, orthotopic mouse models of glioma were created to evaluate the influence of OXCT1-AS1 on tumour growth in vivo. RESULTS: In this study, it was found that the expression of lncRNA OXCT1-AS1 was upregulated in both The Cancer Genome Atlas (TCGA) GBM patients and GBM tissue samples, and high expression of OXCT1-AS1 predicted a poor prognosis. Suppressing OXCT1-AS1 expression significantly decreased GBM cell proliferation and inhibited cell migration and invasion. We further investigated the potential mechanism and found that OXCT1-AS1 may act as a ceRNA of miR-195 to enhance CDC25A expression and promote glioma cell progression. Finally, knocking down OXCT1-AS1 notably attenuated the severity of glioma in vivo. CONCLUSION: OXCT1-AS1 inhibits glioma progression by regulating the miR-195-5p/CDC25A axis and is a specific tumour marker and a novel potential therapeutic target for glioma treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Coenzima A-Transferases/genética , Glioblastoma/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese , Progressão da Doença , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Prognóstico , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , Transfecção
10.
ACS Synth Biol ; 10(3): 478-486, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33625207

RESUMO

1,3-Propanediol (1,3-PDO) is a promising platform chemical used to manufacture various polyesters, polyethers, and polyurethanes. Microbial production of 1,3-PDO using non-natural producers often requires adding expensive cofactors such as vitamin B12, which increases the whole production cost. In this study, we proposed and engineered a non-natural 1,3-PDO synthetic pathway derived from acetyl-CoA, enabling efficient accumulation of 1,3-PDO in Escherichia coli without adding expensive cofactors. This functional pathway was established by introducing the malonyl-CoA-dependent 3-hydroxypropionic acid (3-HP) module and screening the key enzymes to convert 3-HP to 1,3-PDO. The best engineered strain can produce 2.93 g/L 1,3-PDO with a yield of 0.35 mol/mol glucose in shake flask cultivation (and 7.98 g/L in fed-batch fermentation), which is significantly higher than previous reports based on homoserine- or malate-derived non-natural pathways. We also demonstrated for the first time the feasibility of producing 1,3-PDO from diverse carbohydrates including xylose, glycerol, and acetate based on the same pathway. Thus, this study provides an alternative route for 1,3-PDO production.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Ácido Láctico/análogos & derivados , Engenharia Metabólica , Propilenoglicóis/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Glicerol/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Propilenoglicóis/química , Vitamina B 12/química , Xilose/metabolismo
11.
Biochimie ; 183: 55-62, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33596448

RESUMO

Succinyl-CoA:3-oxoacid coenzyme A transferase deficiency (SCOTD) is a rare autosomal recessive disorder of ketone body utilization caused by mutations in OXCT1. We performed a systematic literature search and evaluated clinical, biochemical and genetic data on 34 previously published and 10 novel patients with SCOTD. Structural mapping and in silico analysis of protein variants is also presented. All patients presented with severe ketoacidotic episodes. Age at first symptoms ranged from 36 h to 3 years (median 7 months). About 70% of patients manifested in the first year of life, approximately one quarter already within the neonatal period. Two patients died, while the remainder (95%) were alive at the time of the report. Almost all the surviving patients (92%) showed normal psychomotor development and no neurologic abnormalities. A total of 29 missense mutations are reported. Analysis of the published crystal structure of the human SCOT enzyme, paired with both sequence-based and structure-based methods to predict variant pathogenicity, provides insight into the biochemical consequences of the reported variants. Pathogenic variants cluster in SCOT protein regions that affect certain structures of the protein. The described pathogenic variants can be viewed in an interactive map of the SCOT protein at https://michelanglo.sgc.ox.ac.uk/r/oxct. This comprehensive data analysis provides a systematic overview of all cases of SCOTD published to date. Although SCOTD is a rather benign disorder with often favourable outcome, metabolic crises can be life-threatening or even fatal. As the diagnosis can only be made by enzyme studies or mutation analyses, SCOTD may be underdiagnosed.


Assuntos
Acidose , Encefalopatias Metabólicas Congênitas , Coenzima A-Transferases/deficiência , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Acidose/enzimologia , Acidose/genética , Encefalopatias Metabólicas Congênitas/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Coenzima A-Transferases/química , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Cristalografia por Raios X , Humanos , Corpos Cetônicos/química , Corpos Cetônicos/genética , Corpos Cetônicos/metabolismo , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Domínios Proteicos
12.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33452024

RESUMO

Karst caves are widely distributed subsurface systems, and the microbiomes therein are proposed to be the driving force for cave evolution and biogeochemical cycling. In past years, culture-independent studies on the microbiomes of cave systems have been conducted, yet intensive microbial cultivation is still needed to validate the sequence-derived hypothesis and to disclose the microbial functions in cave ecosystems. In this study, the microbiomes of two karst caves in Guizhou Province in southwest China were examined. A total of 3,562 bacterial strains were cultivated from rock, water, and sediment samples, and 329 species (including 14 newly described species) of 102 genera were found. We created a cave bacterial genome collection of 218 bacterial genomes from a karst cave microbiome through the extraction of 204 database-derived genomes and de novo sequencing of 14 new bacterial genomes. The cultivated genome collection obtained in this study and the metagenome data from previous studies were used to investigate the bacterial metabolism and potential involvement in the carbon, nitrogen, and sulfur biogeochemical cycles in the cave ecosystem. New N2-fixing Azospirillum and alkane-oxidizing Oleomonas species were documented in the karst cave microbiome. Two pcaIJ clusters of the ß-ketoadipate pathway that were abundant in both the cultivated microbiomes and the metagenomic data were identified, and their representatives from the cultivated bacterial genomes were functionally demonstrated. This large-scale cultivation of a cave microbiome represents the most intensive collection of cave bacterial resources to date and provides valuable information and diverse microbial resources for future cave biogeochemical research.IMPORTANCE Karst caves are oligotrophic environments that are dark and humid and have a relatively stable annual temperature. The diversity of bacteria and their metabolisms are crucial for understanding the biogeochemical cycling in cave ecosystems. We integrated large-scale bacterial cultivation with metagenomic data mining to explore the compositions and metabolisms of the microbiomes in two karst cave systems. Our results reveal the presence of a highly diversified cave bacterial community, and 14 new bacterial species were described and their genomes sequenced. In this study, we obtained the most intensive collection of cultivated microbial resources from karst caves to date and predicted the various important routes for the biogeochemical cycling of elements in cave ecosystems.


Assuntos
Cavernas/microbiologia , Genoma Bacteriano , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Metagenoma , Metagenômica , Microbiota , Nitrogênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Enxofre/metabolismo
13.
Nat Med ; 26(11): 1766-1775, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33139948

RESUMO

Growing up on a farm is associated with an asthma-protective effect, but the mechanisms underlying this effect are largely unknown. In the Protection against Allergy: Study in Rural Environments (PASTURE) birth cohort, we modeled maturation using 16S rRNA sequence data of the human gut microbiome in infants from 2 to 12 months of age. The estimated microbiome age (EMA) in 12-month-old infants was associated with previous farm exposure (ß = 0.27 (0.12-0.43), P = 0.001, n = 618) and reduced risk of asthma at school age (odds ratio (OR) = 0.72 (0.56-0.93), P = 0.011). EMA mediated the protective farm effect by 19%. In a nested case-control sample (n = 138), we found inverse associations of asthma with the measured level of fecal butyrate (OR = 0.28 (0.09-0.91), P = 0.034), bacterial taxa that predict butyrate production (OR = 0.38 (0.17-0.84), P = 0.017) and the relative abundance of the gene encoding butyryl-coenzyme A (CoA):acetate-CoA-transferase, a major enzyme in butyrate metabolism (OR = 0.43 (0.19-0.97), P = 0.042). The gut microbiome may contribute to asthma protection through metabolites, supporting the concept of a gut-lung axis in humans.


Assuntos
Asma/epidemiologia , Butiratos/metabolismo , Coenzima A-Transferases/genética , Microbioma Gastrointestinal/genética , Adolescente , Asma/genética , Asma/microbiologia , Asma/patologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Butiratos/isolamento & purificação , Criança , Fezes/química , Feminino , Humanos , Lactente , Pulmão/metabolismo , Pulmão/patologia , Masculino , RNA Ribossômico 16S/genética
14.
Nat Commun ; 11(1): 5598, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154364

RESUMO

Pimelic acid, a seven carbon α,ω-dicarboxylic acid (heptanedioic acid), is known to provide seven of the ten biotin carbon atoms including all those of the valeryl side chain. Distinct pimelate synthesis pathways were recently elucidated in Escherichia coli and Bacillus subtilis where fatty acid synthesis plus dedicated biotin enzymes produce the pimelate moiety. In contrast, the α-proteobacteria which include important plant and mammalian pathogens plus plant symbionts, lack all of the known pimelate synthesis genes and instead encode bioZ genes. Here we report a pathway in which BioZ proteins catalyze a 3-ketoacyl-acyl carrier protein (ACP) synthase III-like reaction to produce pimeloyl-ACP with five of the seven pimelate carbon atoms being derived from glutaryl-CoA, an intermediate in lysine degradation. Agrobacterium tumefaciens strains either deleted for bioZ or which encode a BioZ active site mutant are biotin auxotrophs, as are strains defective in CaiB which catalyzes glutaryl-CoA synthesis from glutarate and succinyl-CoA.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Alphaproteobacteria/metabolismo , Biotina/metabolismo , Lisina/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Proteína de Transporte de Acila/metabolismo , Acil Coenzima A/metabolismo , Adipatos/metabolismo , Alphaproteobacteria/enzimologia , Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Glutaratos/metabolismo , Mutação , Ácidos Pimélicos/metabolismo
15.
Genes (Basel) ; 11(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105702

RESUMO

Relatively little is known about the ecological forces shaping the gut microbiota composition during infancy. Therefore, the objective of the present study was to identify the nutrient utilization- and short-chain fatty acid (SCFA) production potential of gut microbes in infants during the first year of life. Stool samples were obtained from mothers at 18 weeks of pregnancy and from infants at birth (first stool) at 3, 6, and 12-months of age from the general population-based PreventADALL cohort. We identified the taxonomic and SCFA composition in 100 mother-child pairs. The SCFA production and substrate utilization potential of gut microbes were observed by multiomics (shotgun sequencing and proteomics) on six infants. We found a four-fold increase in relative butyrate levels from 6 to 12 months of infant age. The increase was correlated to Eubacterium rectale and its bacterial network, and Faecalibacterium prausnitzii relative abundance, while low butyrate at 12 months was correlated to Ruminococcus gnavus and its associated network of bacteria. Both E. rectale and F. prausnitzii expressed enzymes needed for butyrate production and enzymes related to dietary fiber degradation, while R. gnavus expressed mucus-, fucose, and human milk oligosaccharides (HMO)-related degradation enzymes. Therefore, we believe that the presence of E. rectale, its network, and F. prausnitzii are key bacteria in the transition from an infant- to an adult-like gut microbiota with respect to butyrate production. Our results indicate that the transition from an infant- to an adult-like gut microbiota with respect to butyrate producing bacteria, occurs between 6 and 12 months of infant age. The bacteria associated with the increased butyrate ratio/levels were E. rectale and F. prausnitzii, which potentially utilize a variety of dietary fibers based on the glycoside hydrolases (GHs) expressed. R. gnavus with a negative association to butyrate potentially utilizes mucin, fucose, and HMO components. This knowledge could have future importance in understanding how microbial metabolites can impact infant health and development.


Assuntos
Butiratos/metabolismo , Clostridiales/metabolismo , Eubacterium/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/genética , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Humanos , Lactente
16.
Biochim Biophys Acta Bioenerg ; 1861(11): 148283, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763239

RESUMO

Acetate:succinate CoA transferase (ASCT) is a mitochondrial enzyme that catalyzes the production of acetate and succinyl-CoA, which is coupled to ATP production with succinyl-CoA synthetase (SCS) in a process called the ASCT/SCS cycle. This cycle has been studied in Trypanosoma brucei (T. brucei), a pathogen of African sleeping sickness, and is involved in (i) ATP and (ii) acetate production and proceeds independent of oxygen and an electrochemical gradient. Interestingly, knockout of ASCT in procyclic form (PCF) of T. brucei cause oligomycin A-hypersensitivity phenotype indicating that ASCT/SCS cycle complements the deficiency of ATP synthase activity. In bloodstream form (BSF) of T. brucei, ATP synthase works in reverse to maintain the electrochemical gradient by hydrolyzing ATP. However, no information has been available on the source of ATP, although ASCT/SCS cycle could be a potential candidate. Regarding mitochondrial acetate production, which is essential for fatty acid biosynthesis and growth of T. brucei, ASCT or acetyl-CoA hydrolase (ACH) are known to be its source. Despite the importance of this cycle, direct evidence of its function is lacking, and there are no comprehensive biochemical or structural biology studies reported so far. Here, we show that in vitro-reconstituted ASCT/SCS cycle is highly specific towards acetyl-CoA and has a higher kcat than that of yeast and bacterial ATP synthases. Our results provide the first biochemical basis for (i) rescue of ATP synthase-deficient phenotype by ASCT/SCS cycle in PCF and (ii) a potential source of ATP for the reverse reaction of ATP synthase in BSF.


Assuntos
Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Coenzima A-Transferases/metabolismo , Mitocôndrias/metabolismo , Succinato-CoA Ligases/metabolismo , Trypanosoma brucei brucei/metabolismo , Acil Coenzima A/metabolismo , Coenzima A-Transferases/química , Coenzima A-Transferases/genética , Mutação , Fosforilação Oxidativa , Succinato-CoA Ligases/química , Succinato-CoA Ligases/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
17.
Circ Heart Fail ; 13(6): e006573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32493060

RESUMO

BACKGROUND: Previous studies have shown beneficial effects of acute infusion of the primary ketone body, ß-hydroxybutyrate, in heart failure (HF). However, whether chronic elevations in circulating ketones are beneficial remains unknown. METHODS: To chronically elevate circulating ketones in mice, we deleted the expression of the ketolytic, rate-limiting-enzyme, SCOT (succinyl-CoA:3-ketoacid-CoA transferase 1; encoded by Oxct1), in skeletal muscle. Tamoxifen-inducible skeletal muscle-specific Oxct1Muscle-/- knockout (n=32) mice and littermate controls (wild type; WT; n=35) were subjected to transverse aortic constriction (TAC) surgery to induce HF. RESULTS: Deletion of SCOT in skeletal, but not cardiac muscle resulted in elevated concentrations of fasted circulating ß-hydroxybutyrate in knockout mice compared with WT mice (P=0.030). Five weeks following TAC, WT mice progressed to HF, whereas knockout mice with elevated fasting circulating ketones were largely protected from the TAC-induced effects observed in WT mice (ejection fraction, P=0.011; mitral E/A, P=0.012). Furthermore, knockout mice with TAC had attenuated expression of markers of sterile inflammation and macrophage infiltration, which were otherwise elevated in WT mice subjected to TAC. Lastly, addition of ß-hydroxybutyrate to isolated hearts was associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3)-inflammasome activation, which has been previously shown to play a role in contributing to HF-induced cardiac inflammation. CONCLUSIONS: These data show that chronic elevation of circulating ketones protects against the development of HF that is associated with the ability of ß-hydroxybutyrate to directly reduce inflammation. These beneficial effects of ketones were associated with reduced cardiac NLRP3 inflammasome activation, suggesting that ketones may modulate cardiac inflammation via this mechanism.


Assuntos
Ácido 3-Hidroxibutírico/sangue , Coenzima A-Transferases/deficiência , Insuficiência Cardíaca/prevenção & controle , Miocardite/prevenção & controle , Miocárdio/enzimologia , Animais , Coenzima A-Transferases/genética , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Inflamassomos/metabolismo , Preparação de Coração Isolado , Masculino , Camundongos Knockout , Miocardite/sangue , Miocardite/enzimologia , Miocardite/fisiopatologia , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Regulação para Cima , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular
18.
J Basic Microbiol ; 60(7): 639-648, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32378236

RESUMO

Dimethylsulfoniopropionate (DMSP) is widespread in the oceans, and its biological metabolite, dimethyl sulfide (DMS), plays an important role in the atmosphere. The Antarctic region has become a hotspot in DMS studies due to the high spatial and temporal variability in DMS(P) concentration, but the level of bacterial DMS production remains unclear. In this study, a bacterium isolated from Antarctic floating ice, Rhodococcus sp. NJ-530, was found to metabolize DMSP into DMS, and the rate of DMS production was measured as 3.96 pmol·mg protein-1 ·h-1 . Rhodococcus sp. NJ-530 had a DddD-Rh enzyme containing two CaiB domains, which belonged to the CoA-transferase III superfamily. However, the DddD-Rh had a molecular weight of 73.21 kDa, which was very different from previously characterized DddD enzymes in sequence and evolution. In vitro assays showed that DddD-Rh was functional in the presence of acetyl-CoA. This was the first functional DddD from Gram-positive Actinobacteria. Moreover, a quantitative real-time polymerase chain reaction revealed that high temperature facilitated the expression of dddD-Rh, and changes of salinity had little effect on it. This study adds new evidence to the bacterial DMS production in the Southern Ocean and provides a basis for investigating the metabolic mechanism of DMSP in extreme environments.


Assuntos
Coenzima A-Transferases/metabolismo , Rhodococcus/metabolismo , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo , Acetilcoenzima A/química , Regiões Antárticas , Coenzima A-Transferases/genética , Desmetilação , Temperatura
19.
Nat Commun ; 11(1): 2039, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341350

RESUMO

Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.


Assuntos
Apoptose , Infarto do Miocárdio/genética , Miócitos Cardíacos/citologia , RNA Longo não Codificante/genética , Envelhecimento , Animais , Proteínas de Transporte/genética , Sobrevivência Celular , Coenzima A-Transferases/genética , Modelos Animais de Doenças , Inativação Gênica , Humanos , Proteínas com Domínio LIM/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , RNA Antissenso/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição de p300-CBP/genética
20.
Cell Mol Life Sci ; 77(17): 3423-3439, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31722069

RESUMO

SUGCT (C7orf10) is a mitochondrial enzyme that synthesizes glutaryl-CoA from glutarate in tryptophan and lysine catabolism, but it has not been studied in vivo. Although mutations in Sugct lead to Glutaric Aciduria Type 3 disease in humans, patients remain largely asymptomatic despite high levels of glutarate in the urine. To study the disease mechanism, we generated SugctKO mice and uncovered imbalanced lipid and acylcarnitine metabolism in kidney in addition to changes in the gut microbiome. After SugctKO mice were treated with antibiotics, metabolites were comparable to WT, indicating that the microbiome affects metabolism in SugctKO mice. SUGCT loss of function contributes to gut microbiota dysbiosis, leading to age-dependent pathological changes in kidney, liver, and adipose tissue. This is associated with an obesity-related phenotype that is accompanied by lipid accumulation in kidney and liver, as well as "crown-like" structures in adipocytes. Furthermore, we show that the SugctKO kidney pathology is accelerated and exacerbated by a high-lysine diet. Our study highlights the importance of non-essential genes with no readily detectable early phenotype, but with substantial contributions to the development of age-related pathologies, which result from an interplay between genetic background, microbiome, and diet in the health of mammals.


Assuntos
Envelhecimento , Coenzima A-Transferases/genética , Microbioma Gastrointestinal , Síndrome Metabólica/patologia , Animais , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/isolamento & purificação , Carnitina/análogos & derivados , Carnitina/metabolismo , Coenzima A-Transferases/deficiência , Suplementos Nutricionais , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Rim/metabolismo , Rim/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Lisina/administração & dosagem , Síndrome Metabólica/metabolismo , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...